Friday, April 19, 2024

Why a Couple Pieces of Fruit Sent My Triglycerides Through the Roof, and How it Relates to Chronic Health

A Demonstration of the "Energy Delivery" Nature of Lipid Mechanics



Last Monday, I had my blood drawn and triglycerides measured at 103 mg/dl. On a Tuesday test they spiked to 241 mg/dl and by Thursday had once again returned to a baseline of 106 mg/dl.

I didn’t “cheat” on any of these blood draws. They were all standard, appropriately fasted tests that no clinician would ever take issue with. So what happened to cause these dramatic changes?

The answer, in short, is that I ate a bit of fruit. Two bananas and an apple to be exact. But a little fruit obviously doesn’t usually send a person’s triglycerides skyrocketing, so it’s the context that make this demonstration so interesting and illustrative.

 

What I Did

 

To be clear, this is hardly the world’s most rigorous experiment. It really wasn’t an experiment at all, just a decision to measure an effect I knew would occur during a planned real-life event. I had been eating only meat for the last couple weeks and was now planning to reintroduce a bit of fruit to my diet. As such, my reliance on stored body fat was going to decrease and create a prime opportunity to illustrate the energy delivery nature of lipid mechanics. The conventional wisdom that chronic fat consumption drives gradual changes in lipid levels is broadly incorrect and insufficient to explain lipid behavior, and the expected rapid changes during this dietary transition would serve as a demonstration of this reality.

So anyway….I ate nothing but meat for a while before reintroducing a small amount of fruit last Monday with my dinner (2 bananas, an apple, some ground beef). I had my blood drawn for three lipid panels during the transition – Monday (before introducing fruit), Tuesday, and Thursday. The total fat and carbohydrate consumption in the days leading into and during the transition are given in the graph below. 






The Results 


Full lipid panels are given in the following chart. As can be seen, dramatic changes in triglycerides were observed, with values spiking significantly on the second day before returning to baseline shortly thereafter. LDL-C changes are also fairly dramatic, but LDL-C + VLDL-C levels decrease gradually across the 3 tests. While the triglyceride changes were the main point of the demonstration, the LDL/VLDL changes also occur in a manner that can be much better explained by an energy delivery model of lipid behavior rather than the standard “fat consumption” paradigm. The second graph shows how dramatic an outlier this triglyceride result was compared to my typical values. 



Date

4/8/24

4/9/24

4/11/24

LDL-C

137

109

120

HDL-C

56

43

49

Triglycerides

103

241

106

VLDL-C

18

42

19

LDL+VLDL

155

151

139








What This Shows


What this essentially demonstrates is the degree of reliance on fatty acids for energy in the complete absence of carbohydrates. In a low glycemic, low insulin environment stored triglycerides are being broken down rapidly and returned to the liver to be packaged and distributed to the body within VLDL particles. The extreme lack of insulin and high reliance on fatty acids for energy means this is happening at an increased rate – It shows up on the lipid panel as a moderate increase in LDL-C.


**Quick refresher/explainer on terminology and physiology - fat entering the liver is converted to triglycerides and packaged into lipoproteins called VLDL. VLDL carry cholesterol and triglycerides away from the liver to the muscle and fat cells of the body. VLDL are typically short-lived and are converted to LDL particles after they offload triglycerides either to the cells of the body or back at the liver. LDL particles have a longer lifespan (days instead of hours) and carry primarily cholesterol around the bloodstream. VLDL-C and LDL-C refer to the amount of cholesterol contained within each particle class. LDL-C, but not VLDL-C, typically goes up when larger amount of triglycerides need to be trafficked for energy because the higher number of VLDL particles offload triglycerides quickly and convert to LDL. More background info can be found here**


Why not elevated triglycerides though? Because despite my body producing more triglyceride containing VLDL particles than the average person would, blood levels of triglycerides remain unelevated due to their rapid utilization. In essence, the total fatty acid throughput – first from body fat to liver, then in VLDL from liver to muscle (and, for some, back to body fat) – is high, but the levels in the blood at any given time are not.

The introduction of even a small amount of carbohydrates demonstrates the rate at which triglycerides were moving around. Upon consumption, they elevate the blood sugar and their removal from the bloodstream prioritizes them as an energy source over the significant flow of triglycerides. Because it takes some amount of time for newly liberated fat stores to travel to the liver and be repackaged in VLDL particles (and perhaps because insulin does not spike high enough or fast enough after limited carb consumption to immediately “shut off” fat breakdown), there will for some time be a build-up of triglycerides leaving the liver waiting to be taken up by the body.

The carbs delay these triglycerides and, combined with the triglycerides being provided by the rest of my dinner, cause the high throughput to come to an abrupt halt. The next morning, a full 13 hours fasted, the backlog still fails to fully clear, resulting in high measured triglyceride (and VLDL-C) levels. Given a bit more time, however, this backlog does indeed clear as fewer VLDL particles are produced.

Just two days after the spike, triglycerides levels return to Monday’s baseline level. Carbohydrate consumption remains but, overall, things have now changed. The small carbohydrate contribution to energy is no longer additional to the heavy reliance on stored body fat, but instead replaces a portion of it as the breakdown of stored body fat is throttled back a degree. Fewer triglycerides are mobilized from the body’s stores and so the brief excess of energy supply no longer exists.

This same effect can be observed in my LDL-C and VLDL-C levels as well. Remember, reliance on these lipoproteins for energy transport is a prime driver of LDL/VLDL cholesterol. As such, those combined values are highest during my first blood draw but decrease gradually over the next two as less fat is mobilized from my body’s stored reserves. With less stored fat being liberated, less fat is necessarily trafficked to the liver to be packaged and distributed in VLDL particles. The “build-up” effect can be clearly seen on the second blood draw, where VLDL-C spikes as the VLDL particles fail to offload triglycerides and convert to LDL particles. The failure of these VLDL particles to appropriately (ie. quickly) convert to LDL causes the sharp decrease in LDL-C as old LDL particles are removed from circulation without being replaced. LDL-C rebounds to a degree on the final draw despite lower VLDL production because these previously long-lived VLDL particles have now finally converted to LDL.

 

 

What This Implies for Chronic Health

 

This particular demonstration is a unique sort of one-off that won’t apply to most people in most situations, but it is nonetheless relevant to chronic metabolic health as well. While my demonstration succeeds in creating an “energy back-up” in the short term, it is that same backlogged delivery of triglycerides that serves as a hallmark of chronic metabolic dysfunction. In short, it is the precisely the same mechanisms – prolonged VLDL residence times and increased triglyceride levels due to delayed or failed triglyceride uptake at the periphery – in each case. The underlying reasons, however, differ.

In my case, as has been covered, the backlog is very brief and is caused by essentially dropping some carbohydrates into a fast-moving river of fatty acid energy. But in chronic cases, the build-up is more gradual and subject to progressive long-term forces. When a person chronically overconsumes carbohydrates, becomes insulin resistant, increases fat stores, and so forth, triglycerides are in certain ways both more prone to enter the bloodstream and more resistant to leaving.

They fail to leave the bloodstream in an appropriately quick manner for largely the same reason as in my experiment – chronically elevated blood sugar forces a prioritized reliance on carbohydrates for energy. This isn’t a major issue in any acute sense, but becomes one when carbohydrates are chronically consumed in excess. Many of these carbohydrates, in the form of fructose, are in fact converted to triglycerides in the liver and join the flow of VLDL particles to the periphery. Additionally, an overweight, insulin resistant individual will become dulled to insulin’s fat-storage effects. While typically the consumption of carbohydrates and corresponding increase in insulin makes it very difficult to liberate body fat, this effect is progressively reduced in cases of insulin resistance. Now, triglycerides in the body’s fat stores are inappropriately broken down and trafficked to the liver for packing in VLDL particles.

When this person chronically consumes carbohydrates, increasing insulin levels and extending VLDL residence time, they contribute to a backlog of these additional sources of VLDL/triglycerides. When the VLDL are unable to offload triglycerides properly, they must be returned to the liver and be offloaded there instead. This is in fact the most critical source of excess triglycerides entering and exiting the liver. When excess triglycerides are returned to the liver, they join the aforementioned additional sources of triglycerides in being packaged again into VLDL particles and leaving the liver to join the triglyceride backlog. For as long as carbohydrate consumption remains high and insulin levels remain elevated, this risks becoming a progressively more serious issue, as triglycerides are increasing unable to be offloaded to the cells of the body and instead returned to the liver to join the ever-growing backlog once more.

The end result, in this case, is chronically elevated triglyceride levels that can’t likely snap back to healthy levels in a day or two. Increasing triglycerides directly lowers HDL-C and increases VLDL production, ultimately leading to the increase in LDL particles and LDL-C commonly assumed to be the cause of chronic cardiovascular disease. In fact, the increased presence of triglyceride-rich lipoproteins is (through the action of CETP) among the actual instrumental drivers of such disease, as the presence of excess triglycerides also generate smaller damage-prone LDL (and HDL) particles. As these effects are secondary to excess carbohydrate consumption, they will necessarily be accompanied by a trend towards increased development of advanced glycation end-products, depressed nitric oxide availability, increased free radical production, and other hyperglycemia-induced facets of compromised vascular health. 

  

Conclusion


In short, I was able to briefly replicate a very unhealthy state that those suffering from metabolic dysfunction experience on a chronic basis. Importantly, the lipid changes observed during this demonstration can only be explained by the demand for energy transport, not by fat consumption. While my failed triglyceride metabolism was effectively a mirage caused only by the unique, acute introduction of carbohydrates, the chronic state is reached by millions and millions who overconsume carbohydrates habitually. This triglyceride backlog and failure of fatty acid metabolism is an instrumental component of cardiovascular disease progression that can be largely moderated or reversed by a shift away from traditional, carbohydrate-based dietary guidelines. 



Further reading on the topics addressed above can be found here - 




















No comments:

Post a Comment